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The theoretical model serving to explain and describe the phenomenon of the electron fracture
mode (EFM) discovered experimentally nearly 20 years ago is advanced. EFM is characterized
by the brittle cleavage of common plastic crystals proceeding with supersonic velocities
independently of initial cracks when subjected to high-intensity electron beams. Using the
invariant T integral of an electromagnetic deformable medium, it is proven that two electrons
moving faster than the phase speed of light attract one another, as distinct from the common
Coulomb’s law. Self-packing of such relativistic electron beams is studied using a periodic chain
model. It is suggested that during irradiation of a solid by a high-intensity electron beam, some
electron clusters are formed, which act as wedges cutting the crystalline specimen. The dynamic
problem of supersonic cutting by a thin wedge is studied, and the drag is calculated. The length
of the resulting crack is computed. The theoretical results are confirmed by available

experimental data.

i. INTRODUCTION

In the mid 1960s, high-power pulse electron-beam ac-
celerators having a voltage of some millions of volts were
invented and later used to fracture various materials. Ex-
perimental data analysis enabled discovery of a new mode
of fracture in several ductile crystals caused by a specific
energy supply to the crack tip. The mode differs from the
well-known thermomechanical modes of fracture caused
by the “heat-thermostress-crack’” mechanism. We call this
new mode the electron fracture mode (EFM). It is char-
acterized by the following three special features: (i) Initial
macrocracks in a specimen do not affect the threshold of
fracture; in other words, the value of the beam intensity at
which the specimen breaks; (ii) fracture of different mate-
rials, which can be very ductile under usual mechanical
loads, occurs in a brittle manner; that is, the specimen
usually splits by a crack without any residual deforma-
tions; (iii) the splitting cracks propagate with supersonic
velocities. These data are controversial from the point of
view of fracture mechanics and, hence, they cannot be un-
derstood or explained with traditional theories.

The purpose of the present study is to create a simple
practical model of the EFM. Our basic viewpoint can be
briefly summarized as follows: During irradiation of a solid
by a high-intensity electron beam, some electron clusters
are formed and act as “blades” or “wedges,” cutting the
crystalline specimen. __

In this section, experimental data on the EFM are an-
alyzed and discussed, while the peculiarities of the EFM
are specified. As a result, we can conclude that the pro-
cesses caused by the EFM are unusual from the point of
view of common fracture mechanics.

In Sec. II, the invariant I" integrals of an electromag-
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netic deformable medium are modified for supersonic sin-
gularities. The basic model and some probiems explaining
and describing the EFM are formulated.

In Sec. III the relativistic electron interactions in
beams are considered. Using I' integrals, we derive the law
of the interaction of two moving relativistic charges; that
is, the generalized Coulomb’s law for relativistic charges.
In particular, when two relativistic electrons e move with
the same velocity v, one behind the other along a rectilinear
trajectory, the force F acting upon the rear electron is
equal to

F-3

c
where a=T .
e

Here R is the distance between the electrons, ¢ is the speed
of light in vacuum, and a is the phase speed of light in a
medium having electromagnetic constants, u, €, and €’. It
appears that two electrons moving faster than the phase
speed of light attract each other, as distinct from the com-
mon Coulomb’s law; hence, the beams of such relativistic
electrons tend to self-pack and self-compress. The latter
problem is studied using a periodic chain model of the
electron beam.

In Sec. IV the dynamic elastic problem of supersonic
cutting by a thin wedge is formulated and solved, and the
drag force is calculated.

In Sec. V the problem of deceleration of the moving
wedge is solved in quasisteady approximation. The length
of a resulting cut, that is, the final crack, is determined.
Some applications of the analytical solutions are gtven.

In Sec. VI the theoretical results are analyzed and
compared with experimental results. The role of relativistic
electrons is estimated and some parameters of solid-state
electron clusters are defined.

The necessity of further study of this mysterious phe-
nomenon is emphasized in Sec. VIL
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A. Principal characteristics of the means of fracture
and experimental conditions

In the 1960s, investigation of the fracture of solids by
beams of electrons and other particles was connected with
the creation of powerful sources of such radiation, for ex-
ample, accelerators using shock autoemission from a
pointed cathode in strong electric fields. The first results of
the fracture of Si, Ge, InSb semiconductor crystals by
high-energy electron beams were published! by Oswald in
1966. In the works that followed, one can also find some
investigations of the fracture of certain metals;> certain
dielectrics; %12 jonic crystals;'>* inorganic glass;>>** and
rocks.?>2® In Russia, most of the investigations were done
in the 1970s, and later the work in this area was classified.

Irradiation of the materials investigated in fracture ex-
periments was done by nanosecond pulses of homogeneous
electron beams with a pulse span 1 ns to 1 us. The average
kinetic energy of a single electron in the beam was equal to
E,~0.1-15 MeV. For reference, the chemical bond energy
in solids is of the order of 1 e¢V. The beam intensity was
measured within the limits from 10 to 10*” s~ m~2 (cur-
rent density, 10°-10° A/m?) so that the average particle
density ® equals 10'*-10" particles/m>. The pulse radia-
tion frequency reached 360 cycles per second. It is signif-
icant that for these energies electrons in the beam are rel-
ativistic. The relationship between energy E and the
velocity of a particle v in relativistic mechanics has the
form

mc?
E= }71_—9/9"”"’”2’

where myg is the mass of the particle at rest, and c is the
velocity of light in a vacupm. Thus,

(1.1.1)

3——,}1 75", E,=—
C_ _( + *) ) *_n?°

For instance, for an electron with energy E of 0.5
MeV, we get v/c=0.85, ¢c/v=1.18, and v=0.25 Gm/s.
This velocity exceeds the phase speed of light in a number
of media, e.g., for many dielectrics. And the scattering of
particle velocities in the beam ensures the presence of su-
perluminal electrons for even smaller energies of a beam.”’
The dependence in Eq. (1.1.1) is shown in Fig. 1. Super-
luminal electrons are electrons moving in a medium with a
speed exceeding the phase velocity of light.

Note that for energies of about 1 MeV, relativistic ef-
fects are essential for light particles only (for electrons,
moézo.s M¢eV, and for neutrons and protons, m0c220.94
GeV), and that further increase of energy changes the par-
ticle velocity only insignificantly, bringing it closer to the
velocity of light in the vacuum c.

The average distance between the particles in the beam
can be estimated, according to the data mentioned above,
about 1-10 um (in the laboratory system of coordinates of
the observer, since with the velocities approaching that of
light, relativistic effects begin to play a role). Substituting
these values into Heisenberg’s uncertainty principle,
namely 1 MeV for AE and 1073 ps for Az, we obtain
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FIG. 1. Dependence of the velocity of a particle v on its energy E.

AEAt=10"7 Js> 4. (1.1.2)

Hence interactions of particles in the beam are of a non-
quantum character, and the electrons can be considered
material particles having no dimensions. The quantum
character of the interaction between the electrons of such
energies arises at distances of the order of 10! pm (the
dimension of the electron localization region, according to
the uncertainty principle).

Let us also dwell upon the question of the character of
the interaction between radiation and the material exposed
to radiation. The totality of atomic nuclei forming the
structure of the substance, and the electrons, take up an
insignificantly small volume in comparison with the vol-
ume of the solid they form. Interatomic distances have the
order of 10~! nm (e.g., for NaCl, the lattice spacing,
a=0.5 nm), the radius of the nucleus, 10~'* m, and the
classic radius of the electron is of the order 2.8 10~!* m.
Since the electron density in a solid is of the same order as
that of atoms in the case of the electron radiation consid-
ered, the irradiated material can be regarded as a contin-
uum. Evaluating the character of the interaction of the
beam particles with the nucleons of the solid, with the help
of Eq. (1.1.2), we shall find that this interaction can also
be considered nonquantum.

In order to eliminate additional mechanical effects, the
dimensions of the irradiated samples in the fracture exper-
iments were such that the absorbed energy was homoge-
neous for the sample volume. The qualitative pattern of
distribution of specific absorbed energy W within sample
thickness 4, is presented® in Fig. 2.

The value A, is the range of a particle in a substance
(e.g., for NaCl, #;=0.45 mm). From Fig. 2, one can see
that the requirement of homogeneity is fulfilled approxi-
mately with the sample thickness, 4.~ Ay/2. In the exper-
iments the thickness of the samples varied from 0.05 mm to
some millimeters (for metals); while investigating the in-
fluence of the inhomogeneity of the absorbed energy, the
sample thickness exceeded the values mentioned to a great
extent. Other sample dimensions were usually restricted by
the dimensions of the homogeneous beam of the particles;
in high-voltage accelerators, the beam radius was several
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FIG. 2. Qualitative dependence of the specific absorbed energy W on the
sample thickness 4, .

millimeters. Under laboratory conditions, the accelerator
and the samples investigated were placed in a vacuum
chamber to reduce energy losses. The materials investi-
gated also included strong, defect-free whisker crystals and
radiation-hardened materials whose mechanical properties
differ greatly from those of common materials.'®

The average absorbed specific energy during irradia-
tion, W=10"'-10 eV/nm® (107%-1 GJ/m®), while
threshold fracture energies were of the order of 10~
eV/nm’. The critical values of W= W, for some materials
are presented in Table I. The quantities W, are two or
three orders less than the binding energy of ideal crystals
(for NaCl, according to Ref. 31, the binding energy
U,=400 eV/nm’, ie., 75 GI/m?), ie., the theoretical
strength of the material.

B. Influence of irradiation by high-power electron
beams on solids (experimental data)

When solids are irradiated by powerful pulse beams of
relativistic electrons, a number of specific mechanical and
physical phenomena appear. Let us mention the main ef-
fects. Fracture of various materials, even those that are
very ductile under usual conditions, occurs in a “brittle™
way."*7"*15 Fracture is of a threshold nature character-
ized by the absence of accumulation effects and determined
by the value of the critical density irradiation or by the
corresponding density of absorbed energy.'-*-32-3
Cracks fracturing the sample grow with super-Rayleigh
and supersonic velocities.'*!*26°7% Macrodefects and pre-
liminary man-made cracks have negligible influence on the
fracture of dielectrics.'>?*>3 Thresholds of fracture de-
pend slightly on the temperature and purity of crystals and
also on the energy of relativistic particles.!>*>¢ In an ul-
trashort range (10~'-10 ps), the conductance of dielec-
trics grows many times.'!"?! Dielectrics glow in ultraviolet
and visible spectral regions.!® Powerful electron emissions
turn into a vacuum discharge between the surface of the
dielectric and the anode.'® We will consider these peculiar-
ities in more detail below.

First, we shall consider the fracture of samples with
small thicknesses for which the absorbed energy distribu-
tion can be regarded as close to homogeneous. All of the
materials are characterized by brittle fracture of the sam-
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TABLE 1. Thresholds of irradiation power and fracture energy for some
materials.

®, W,
Materials (W/nm?) (eV/nm?) Ref.
RbCl 0.09 0.12 15
Zn$ 0.36 0.14 15
InSb 0.17 0.50 1
Si 0.50 2.05 1
LiF 0.17 0.24 15
0.17 0.30 18
NaF 0.13 0.18 15
0.13 0.23 18
NaCl 0.11 0.14 15
0.11 0.20 18
Ge 0.3 1.20 15
0.3 1.50 18
0.3 1.17 1
Al 0.67 s 40
KBr 0.09 0.12 15
Whisker
crystal KBr 0.42 0.57 15
KCl 0.07 0.11 18
0.08 0.09 19
0.07 0.09 15
Whisker
crystal KCl 0.42 0.47 15
Rocks® 450-750° 25,26

“Basalt, granite, sandstone, limestone, greenstone, marble, and clayey
schist were studied.
®Specific absorbed energy of irradiation ensuring fracture.

ples along one or two main cracks; in fact, any effects of
ductility, even for metals, are not observed at all.”*4! The
second characteristic feature comprises low fracture
thresholds for specific absorbed energy W, (or the density
of irradiation ®,). The values W, and @, for some mate-
rials are shown in Table 1. If the beam intensity exceeds the
threshold value (®> ®,), a single pulse can produce frac-
ture. Fracture accumulation at precritical irradiation is
very weak; when ®=0.7®_, the samples can endure a con-
siderable number of pulses without fracture. The latter can
be explained by the change of the material properties con-
nected with rebuilding the structure under the action of
irradiation.>'>!® Fracture thresholds of thin samples do
not depend, in fact, on the average electron energy E, when
energies are in the interval of 0.1-15 MeV, pulse durations
7 equal 1-10 ns, and sample temperatures, 80-500 K. For
irradiation at considerably smaller energies and densities
fracture thresholds depend substantially on temperature.®

Experiments on the fracture of glass'®?* evidence that
the mechanical strength of glass fluctuates within wide lim-
its, but the irradiation strength of glass is evaluated with
great precision.

In anisotropic crystals, several sharply expressed frac-
ture thresholds accord to the different directions of frac-
ture; the typical histogram of distribution has two
maxima'’? (see Fig. 3). The maxima are caused by the
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FIG. 3. Typical histograms of fracture threshold irradiation power rate for thin KCl specimens: (a) irradiation ensuring the fracture; (b) irradiation

of individual impulse.

possible development of the splitting crack on different
cleavage planes under similar conditions of irradiation.
Fracture thresholds of all solids, while fracturing thin sam-
ples, do not depend on the macrodefects of the samples,
and while fracturing dielectrics, splitting of the sample
takes place in the undisturbed part despite the presence of
microcracks or even previously created cracks.?’~**® (In
some materials, splitting cracks can also grow from mac-
rodefects. )

The microdefects of materials with a dislocation den-
sity of 10°~10'2 mm™? exercise only weak influence on
their irradiation strength. Preliminary irradiation and the
so-called radiation hardening change irradiation thresholds
of fracture insignificantly®>?® despite the fact that the hard-
ening increases dislocation density 10°~10* times, with con-
siderable increase of mechanical strength. Some data on
the influence of preliminary irradiation on the fracture
threshold of KCl crystals for plates with a thickness of
hy=300 pm are shown in Table II. It should be mentioned
that for preliminary hardening, the greatest effect is
achieved by irradiation with light charged particles (elec-

TABLE I1. Fracture threshold of KCi crystals in terms of the prelimi-
nary irradiation power.

Total Fracture threshold
Energy of irradiation power rate of
Type of preliminary particles energy irradiation
irradiation {(MeV) (3/nm?) (W/nm®)
No preliminary e 0 0.08
irradiation

Protons 6 3 0.096
Thermal neutrons <1 100 0.083

<1 1000 0.087
High-speed neutrons >1 100 0.091

>1 1000 0.095
Electrons 2 10 0.097
7137 J. Appl. Phys., Vol. 74, No. 12, 15 December 1993

trons), while the slightest effect with slow neutrons; how-
ever, the fracture thresholds of “defectless” whisker crys-
tals can drop several times (see Table I).

Increasing the sample thickness does not change the
general character of fracture; it remains brittle, and there is
a threshold irradiation energy; however, other factors, un-
noticed before, begin to influence fracture properties. In
addition to the main cracks splitting the sample, one can
observe splitting out, swelling, and loosening of the surface
on both sides of the sample.!>?’ Some materials carry
traces of blast radiolysis: gas bubbles and surface erosion.’
The density of the beam required for fracture ® , grows as
the sample thickness increases; dependence of ¢ , on A, for
a single pulse is presented'? in Fig. 4. Fracture of thick
samples is influenced by already existing defects. With in-
termediate beam density, ®,<® <P, a crack appears in
the specimen, but it does not propagate through; cyclic
irradiation results in further propagation of the crack and
fracture. With subcritical density ® <P, after several cy-
cles of irradiation of thick samples, one can observe sub-

0.4 |
Linear depondano/
0.2

(pf, nm-2

Transiont
domain
0.1 |
¢ ° 1 Minimum threshoid intensity
; |
0 0.5 1.0 1.5 20
h,, mm

FIG. 4. Diagram of the fracturing beam density ®  vs sample thickness
h, for a single pulse.
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critical growth of already existing cracks or microcracks of
the material, i.e., a shift of the fracture threshold occurs
under prolonged exposure, and the fracture of samples is
accompanied by the appearance of a great number of
cracks.?

The speed of crack growth in the material under nor-
mal conditions is determined by the rate of energy fed to
the end of the moving crack. Under usual mechanical load-
ing in isotropic elastic media, the speed of crack growth V',
is limited by the value ¢, at which branching takes place,
cy=c¢/2, where ¢, is the velocity of shear waves in the
medium. If the rectilinear direction of crack growth is pre-
determined, e.g., by anisotropy of the material, the maxi-
mum speed of crack growth under the influence of external
forces will be’** the speed of Rayleigh waves cg. If the
growth of the fracturing crack begins inside the specimen,
the speed of fracture V,=h/7,, where k, is the sample
thickness and 7 is the time to sample fracture, will exceed
the speed of crack growth in one direction V.. In the lim-
iting case of splitting from the center of the sample. the
speed of fracture can reach the value of 2¥,. Thus. the
maximum value of the fracture speed for an isotropic plate
under normal conditions is 2c, . and for anisotropic. 2cg.

Many authors!!}=1%19-2¢ observed high speeds of frac-
ture considerably exceeding both the speed of Rayleigh
waves and that of transverse and longitudinal elastic waves
while fracturing solids by powerful relativistic electron
beams. Although exact experimental measurements of
fracture speeds are very scarce, the data are reliable and
significant: Average fracture speeds mentioned in these ar-
ticles exceeded the maximum speed of brittle fracture 2¢j.
For instance, while fracturing KCi and NaCl crystals, the
average fracture speed V. reached values of more than 3¢y
(see Fig. 5). In this case, the speed of longitudinal elastic
waves is: ¢,=4500, ¢,;=2.4, cg=2.3, and ¢, =1.5 K m/s.
These data show that the fracture of solids with powerful
electron beams differs considerably from usual brittle frac-
ture and other types of quasibrittle, tough, or ductile frac-
ture.

It should be noted that the methods of measuring frac-
ture speeds by secondary current pulse give only a crude
estimate of the lower bound of crack growth speed for the
following reasons.'? First, the speed of fracture can exceed
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the average value to a great extent. Second, the fracture
process lasts considerably longer (~ 10~ 7 s) than the irra-
diation pulse that causes it (~107% s); thus, the average
fracture speed can result from considerably different speeds
of crack growth at different stages of propagation. Third,
the exact place of crack emergence is not known, and even
the average crack speed V, determined from the data on
fracture speed ¥V, can differ within the interval
Vi/2<V,<V;. Hence, the speed of crack growth can ex-
ceed averaged experimental values to a very great extent.

It is worth noting that in the case of optical fracture
caused by laser rays, the speed of crack growth can exceed
the speed of elastic waves several times.** Even crack
speeds of the order of 100c, were registered.*’ Probably
some resemblance must exist between the mechanisms of
electron and optical fracture.

Another specific feature of fracture by powerful elec-
tron irradiation is connected with a small number of the
cracks fracturing the sample. As already mentioned above,
even for beam parameters that considerably exceed thresh-
old values, usually only one crack appears. The number of
splitting cracks increase only to two or three for a beam
density two to three orders of magnitude higher than the
threshold density.

All of the preceding phenomena connected with the
fracture of solids by powerful relativistic electron beams
manifest themselves very clearly for dielectrics (for alkali-
haloid crystals, in particular). We should stress the unex-
pected peculiarity of the fracture of dielectrics: Macrode-
fects in the samples do not affect fracture. Even with the
weakening of samples by means of cracks made before-
hand. irradiation fracture takes place in some virgin region
of the sample. Apparently, the mechanism of the fracture
of dielectrics by relativistic electron beams of high intensity
is connected with the continuity of the medium.

Other effects of the irradiation of solids by high-energy
electron beams are not connected directly with the fracture
of materials. However, these are observed only while irra-
diating materials by relativistic electron beams and they do
not depend upon the temperature and purity of the crys-
tals.

The very large increase in electric conductivity of di-
electrics with electron irradiation is not a threshold phe-
nomenon and is connected only with electron beams; it is
not observed with neutron, proton, or photon
irradiation.!*?!*® The electrical conductivity of the mate-
rial o can increase considerably, by three to four orders,
even if irradiation intensity ® is smaller than the threshold
intensity ®,. Near the fracture threshold, o reaches values
of the order of 10 Q' m~?, which is 10°~10'° times larger
than the initial value (e.g., for a threshold beam density,
the resistance of the KCI sample corresponds to the resis-
tance of a similar metal sample under usual conditions).
The dependence of the pulse electrical conductivity o on
the density of electron irradiation for the KBr samples is
shown?® in Fig. 6. Relaxation time for the intensive com-
ponent of conductivity is very short. In the same work, it is
noted that even for a high-speed oscilloscope with a resolv-
ing power of 10~ ! ns it is impossible to determine the shape
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FIG. 6. Dependence of the specific electrical conductivity o on the elec-
tron beam density @ for the KBr sample.

of the current pulse signal; the authors evaluated the time
of existence of the effect with values of the order of 1072
s. (This value is comparable to the time, 1-10~" ps, the
electromagnetic disturbance passes through such a sam-
ple.) As external voltage increases, the pulse electrical con-
ductivity grows weakly; for a voltage of —600 to +600 V
(corresponding to fields of 10 MV/m with the intensity of
the internal field of the solid being®' of the order of 1-100
GV/m), the increase of ¢ does not exceed 30%. The im-
mense increase in the conductivity of dielectrics in the in-
terval 80400 K does not depend on temperature. This
fact, as well as the ultrashort time of relaxation of the
effect, proves that charge carriers are fast electrons. The
kinetic energy of these carriers must considerably exceed
the energy of the thermal electrons, which is about 0.1 eV.

The typical dependence of o on flux ® (see Fig. 6)
shows a sharp change of the rate of increase with the irra-
diation density (®~10"* C/m? where C/m?=6.2x 10?°
electrons/m? in the case of an electron beam). Beginning
from such values of ®, of the order of 10~* C/m? for
dielectrics, one can observe the characteristic glow with a
subnanosecond time de-excitation, considerably shorter
than in the case of fundamental singlet luminescence of
excitons;!>*! the entire irradiated sample glows evenly. It is
worth noting that the purity of the crystals has a very weak
effect on glowing, and the glow intensity within the interval
of 80-500 K does not depend on temperature. Character-
istic features of the glow are as follows (see Fig. 7): (a)
The half-width of the radiation spectrum is 1.5-2 eV; (b)
radiation occurs in the ultraviolet and visible spectral re-
gion with frequency threshold fiw=>5 €V (corresponding to
a wavelength of the order of 2500 A); (c) for a number of
crystals, for KI in particular, the large wavelength tail of
radiation obeys the power law of —3/2; (d) some struc-
ture appears that superimposes a wide band of spectrum
characteristics. |

Figure 8 shows!*?

the dependence of glow intensity of
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FIG. 7. Spectra of light pulse radiation of KI: (1) for ®=25; (2) for
®=11; {3) for ®=24; Coulomb/hm? The thin lines are (a) standard
singlet; (b) triplet luminescence; and (c) fundamental absorption spec-
trum.

KI crystals on ¢ for a subnanosecond glow at 80 K and
exciton glow at 400 K. Note that the glow intensity grows
as P increases, but a section of the curve after &= 103
C/m? can probably indicate the presence of some different
glow mechanisms.

From a practical point of view, the most interesting
prospect is the application of high-voltage accelerators for
fracturing rocks. Here are the most important conclusions
deduced from the first experimental data’?*>*' concerning
the fracture of a number of rocks: (a) The fracture is
brittle and results in the formation of a few large fragments
and many tiny particles whose total volume is very small;
(b) a low-power intensity of fracture, of the order of 10
J/m>, is characteristic of rocks with different mechanical
strengths—up to the strongest of them, such as basalts,
gneisses, etc.

250 I ]
(b) — ¢
2 ‘ / 8
%’ o o //o’ s £
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| 3 8
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- ® ®
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FIG. 8. Dependence of glow intensity in (a) subnanosecond and (b)
exciton range on irradiation beam density ® for KI crystal.
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C. Models and problems of the theory of the
electron fracture mode

Experimental data show that electron fracture exceeds
the limits of conventional notions of viscous, ductile, brit-
tle, or mixed fracture of solids.>**->* At the same time,
this fracture proceeds in a “brittle” way, i.c., at the expense
of one or two considerable cracks propagating in a solid,
which indicates the mechanical nature of splitting the ma-
terial. However, as one can judge from the peculiarities of
the fracture of disturbed samples and supersonic crack
growth registered in the experiments, such splitting (or
cutting) of a solid cannot be produced by means of energy
flow to the end of the crack through the nucleons of the
solid. It is natural to presume the existence of a physical
mechanism which, beginning from a certain critical value
of the beam density of relativistic electrons (or the ab-
sorbed energy), causes the formation of macroscopic elec-
tron clusters in a solid. The contradiction between the me-
chanical character of brittle cleavage and its peculiarities is
then removed entirely. The electron clusters of solid
plasma become the mechanical object whose high-speed
progress causes material cleavage. (The mean-square-law
speed of fluctuations in solid plasma reaches values'>®! of
the order of 1 Mm/s, which considerably exceeds the speed
of elastic waves in a solid.) Furthermore, supersonic
progress of the plasma clusters, like a knife or a wedge
cutting a body, will be accompanied by shock waves in a
solid. The existence of shock waves in a material fractured
by irradiation with powerful electron beams was observed
in many works.*7-3%%33

This explanation (and the corresponding fracture pat-
tern) is called electron fracture mode (EFM) in the suc-
ceeding text. The problems of defining the physical mech-
anism causing the formation of electron clusters in a solid
are also to be studied, as well as the problem of determin-
ing the laws of the motion of clusters cutting the body. To
solve these problems, the present article considers the -
teraction taking place in the powerful relativistic electron
beam in a continuum medium. in which the effect of the
self-packing of particles in the beam is discovered. The
problem of cutting a solid by a “knife” moving with su-
personic speeds is utilized to find the length of a final crack.

This approach can be considered only as a first approx-
imation to the reality. The full picture of these phenomena
must also take into account the effects of the usual types of
viscous, brittle, or ductile fracture, and effects of excitation
in the electron subsystem of a solid. Some authors reported
the existence of several different mechanisms for fracturing
solids by means of powerful relativistic electron beams,
including electrical breakdown,” the mechanical effect of
the electron beam,'? and the thermomechanical effect.2®
There is some mention of the relativistic effects of the ex-
citation of the bound electrons of the material.>> Notice
that it was proved experimentally that the above three
mechanisms barely influence the observed fracture.'>!%18
Different explanations of electron fracture, such as
thermal-shock fracture,”’ accumulation of internal
microvoltages,” **° and the waves of elastic and thermal
stresses,”%*’ do not explain the main peculiarities of EFM
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by the electron irradiation.>®® The suppositions about the
leading role of solid-body plasma, which can be turned into
a condensed state in the process of fracture,'>**>* may be
interesting for the mechanism of plasma “wedge” or
“knife” initiation and some effects of the initial stage of the
process.

The noncontinuum approach to the description of su-
personic fracture was suggested by Sanders>’ using an ideal
lattice in which the crack growth rate is determined by the
rate of energy input. Fracture on the atomic level within
the framework of a one-dimensional model of a limited
chain, analogous to Sanders’s model, was also
considered.>

Il. FORMULATION OF PROBLEMS OF THE THEORY
OF ELECTRON FRACTURE MODE (EFM)

A. Interactions in relativistic electron beams

The electron beams used for the fracture irradiation of
solids are relativistic and, moreover, the particle velocities
surpass the phase speed of electromagnetic waves (the
speed of light) in the material medium, for example, in
dielectrics. The existence of these electrons was discovered
by Cherenkov>®>® and Vavilov.®! The theoretical descrip-
tion of the motion of an individual superluminal electron
and the explanation of the irradiation that arose in the case
of this motion were given by Tamm and Frank® and
Tamm.®?

The phenomenon of the motion of Cherenkov’s super-
luminal electrons and the Cherenkov—Vavilov irradiation
are analogous to the formation of shock waves for electron
motion with velocities faster than elastic-wave speeds in a
continuum.®® The electromagnetic field of a superluminal
electron differs principally from the field of a stationary
charge as follows: In the charge wake inside the Mach cone
only, the components of the electromagnetic field change
sign when the charge velocity passes the phase velocity of
light. This difference completely changes the nature of the
interaction for electron beams moving with superluminal
velocities.

The energy dissipation of an electron (and its deceler-
ation in a medium) depends on the interaction of the elec-
tron’s field with external electromagnetic fields existing in
this media (the bremsstrahlung and ionization), on the
wave losses on the Mach cone fronts (the Vavilov-
Cherenkov irradiation), and on the collective interaction
with the fields of other beam electrons. The interactions of
the first and second kinds are approximately equal for all
beam particles at great speed, and these interactions exert
negligible influence on the mutual spatial distribution of
electrons in the beam. Therefore, this distribution is deter-
mined mainly by their collective interaction. Therefore,
only the collective interaction of electrons is studied below.

The electromagnetic interaction of two or more
charges moving with superiuminal velocities in a contin-
uum medium was studied by Borzykh and Cherepanov.®
The interaction law of two charges is necessary for inves-
tigation of collective interactions. The technique based on
the invariant T integrals®>®® of the mechanics of an elec-
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tromagnetic deformable continuum reveals the interaction
law of two charges and allows study of collective interac-
tions. -

The collective interactions are considered here on the
assumption that all particles have the same constant veloc-
ities. This statement of the problem is correct for the times
much smaller than the time of existence of superluminal
electron beams in a medium, and it permits the simple
estimations of the process parameters. We note, too, that
mutual distribution and collective interaction are consid-
ered in the proper coordinate frame moving with electrons,
and the relativistic effects of the shortening of the length
and time are significant for these systems.® 7>

For the study of collective interactions, we use the
known solution™ of the Maxwell equations for the proper
field of a charge moving with constant velocity ¥, which is
more than the phase speed of light in medium a and less
than the speed of light in vacuum c¢. The asymptotic rep-
resentation of the steady-state field of a superluminal neg-
ative charge e moving along the x; axis in the proper space-
time coordinates x;, x,, x;, ¢ according to the Lorentz
transformations is

e eM*x; 1o
" 2me! (x5 — M) (i=12),
E —eM*x
T ome (—MP)? (21D
Bl =AXZ, Bz= -—Axl,
where
uleVM*(1—a*/c?)
= ;) 3 372 B3 =0. (2.1.2)
27(1—V2/*) (x5 — M*7)
Here,
, (V) —1 peV— c2
UG 277 - Ny 2 R
C 4
A=—p=, W '=pg, € =¢€€,
[113

where E,, E,, E;, B|, B,, and B, are the electromagnetic
field components of the x,x,x; system, a is the phase speed
of light in the medium, and M is the relativistic Mach
number (€, and pq are the absolute dielectric and magnetic
constants of the medium, respectively). The field described
- by the solutions, Eqs. (2.1.1) and (2.1.2), is defined inside
the Mach cone, i.e., in the region x3> M2/, x; <0; outside
this cone, the field of the electron vanishes.

B. Mechanical model of the supersonic cutting of
solids

The phenomenon of the supersonic crack can be ex-
plained by the existence of some macroscopic objects mov-
ing in solids with velocities faster than those of sound.

In the following, we assume that there are some con-
ditions of plasma cluster formation that cut solids like a
“wedge” or a “blade.” These conditions exist at the begin-
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FIG. 9. A thin wedge moving in an elastic solid with a supersonic velocity
(M is the Mach number).

ning of fracture by some critical intensity of irradiation.
This idea is analogous to that of the mechanism of fracture
induced by a plasma jet for high-power pulsed-laser
irradiation.*° The velocity of plasma jet propagation is
faster than elastic wave speeds, too. The large supersonic
velocities of the plasma blade cause the same persistent
pressure of the blade on the surface of the propagating
cracks at their tips. The motion of a finite-length plasma
blade can form a narrow canal of fracture or a fracture
plane. In the above case, the maximum probability of the
crack orientation would be along a minimum-strength
plane, such as the cleavage planes of a crystal. It is obvious
that the irreversible deformations would not have time to
develop on the sides of a resulting crack in the case of
supersonic cutting.

We note, too, the following known dynamic problem
of elasticity: the supersonic motion of a point load on the
boundary of a half-plane.”® The solution to this problem is
analogous to that of a similar acoustic problem,’® compli-
cated by the fact that in elasticity there is the system of two
wave equations and two wave fronts. The supersonic mo-
tion of a finite plasma blade is analogous to the flow past a
thin wing in gas dynamics.

According to these introductory notes, the problem of
supersonic cutting is solved below within the framework of
the model assumptions about an absolutely rigid wedge
and an ideally elastic material. Electron fracture is a com-
plicated phenomenon, and detailed information on the
properties of solid plasma clusters and their behavior in a
material is lacking. Therefore, some simplifications are
needed for a preliminary description of the electron frac-
ture mode and will permit the eventual study of the phe-
nomenon later.

Suppose that a thin, rigid wedge of length / moves in an
infinite elastic space with supersonic velocity V. The wedge
angle is equal to 2a (see Fig. 9), and the direction of
movement is the x axis. The two-dimensional problem is
assumed to be symmetric relative to the x axis; the z coor-
dinate directed along the wedge edge is nonessential. The
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surface of the resulting cavity outside the contact zone is a
free boundary. The law of wedge motion with the initial
supersonic velocity ¥, must be found. The boundary con-
dition is

V,=0 on 2,, (2.2.1)

where ¥, is the normal velocity at the contact surface X .
The condition of contact friction is

Om=F(0,,V,), (2.2.2)

where the directions of the tangent and the normal of the
contact surface 2, are, accordingly, ¢ and »; the normal
and shear stresses are o, and o,,; and the normal and
tangent components of the material velocities are ¥, and
V,. The function F is a known frictional characteristic
found from an experiment, or from the model ideas; for
example, we will assume o,,= fo,, where f is the Cou-
lomb friction coefficient.

The statement of the problem is closed using the con-
ditions of mass and momentum conservation on two Mach
fronts, where velocities and stresses are discontinuous.

C. Invariant gamma integrals of dynamic problems of
mechanics of a deformable, electromagnetic
continuum described by hyperbolic differential
equations

The state of electromagnetic deformable matter can be
characterized by field vectors E, B, D, and H, displacement
vector u, velocity vector v, stress tensor o; j»and a certain
strain tensor ¢;;. The following equations hold:

Maxwell’s equations:

3B, aD,
VirEjkt+—7=0, viljp——-=J
(2.3.1)
ab

Da_: =90, B;’.i= 0, Jf.i+ E=

0;
Neuwion's equations:

d(pr)
Ufj,j=T—PF.- (-

t
tad
t
L S—

The local law of the conservation of energy is

U=qi,i+EiDl'+HfBi-f—Uf}é:j' (23.3)

The kinematic conditions for any finite strains are
(2.3.4)

Here, J is the current density vector; § is the charge den-
sity; p is the density of the matter; x,,x,,x; are the rectan-
gular Cartesian coordinates; ¢ is time; u;, u,, and u,; are
displacement components; q is the vector of the net heat
flux; U is the rate of change of the internal energy of a
matter per unit volume; the dot over a letter refers to the
total derivative with respect to time; and
123=Y31="2=1, "13:2=¥321=%213=—1, all other v,
being equal to 0. The strains of the medium are arbitrary
(&;; is the strain rate tensor).

All functions in these equations are assumed continu-
ously differentiable the necessary number of times through-

26',-}-=v,-,j+vj,,-, U,'=Ii;.
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out the investigated region, with the exception of singular
points, singular lines, and singular surfaces, at which these
equations make no sense.

d66,67

Surface invariant I' integrals of the first kin are

I= L [(3+F-+1ptiyne+ (DE+BH,—0,u,

—qu)mldZ  (i,j,k=1.2,3). (2.3.5)

Here 2 is a surface in the coordinate system, x;,x,,x;; 2
and F are the following potentials:

3 —_ U—EiD,‘—HiBi,

aP,
Fe— J- (_‘3_I+PE!+YIJ‘¢JJBk)dx” (2.3.6)

P=y,;BDy.

In the case of the physical field, which is steady with
respect to X, the following theorems were proven.®%®’

Theorem 2.3.1: T integrals do not change their value
along any closed surface 2 encompassing a singular point,
singular line, or singular surface. Surface X can be arbi-
trarily deformed without changing the value of the I' inte-
grals, if in the deformation process surface 2 does not
intersect a singular point, a singular line, or a singular
surface.

Theorem 2.3.2: If an open surface X is limited by a
three-dimensional contour L, the I' integrals do not
change their value with any deformation of the surface 2,
so long as (a) contour L is fixed, and (b) surface X does
not intersect a singular point, a singular line, or a singular
surface in the process of deformation.

In a Cartesian coordinate system x; moving at con-
stant velocity V coinciding with that of beam electrons, the
I’ integrals are found from Eq. (2.3.5) by the transforma-
tions x; — x,, #; —» #; — V;. Theorems 2.3.1 and 2.3.2 are
true in the x; coordinates for moving surface 2 fixed with
beam electrons in the case of thermodynamically reversible
media, or for any media by steady processes when k=1.

Supersonic or superluminal motions of singularities:
The theory of the motion of singularities®>®’ is detailed
here for the case of velocities faster than the speed of prop-
agation of sonic¢, luminal, and other processes.

To be specific, consider a singular point O;, moving
with a superluminal or supersonic velocity. This motion
forms a moving, singular surface 2, (or a family of singu-
lar surfaces for different wave processes), joined with the
singular point O,. If the motion of O is a locally steady
process, surface 3, is the conic surface x3 = Mz*rz, x3 <0,
near the point O,, where the x; axis is collinear with the
velocity vector V; M, is the Mach number of the relative
wave process with characteristic speed, c, ; and M, and 7
are

M.=V¥c,—1>0 and P=xi+x;

where x;. x,. and x; are moving coordinates. By consider-
ing the motion of a singularity from time r=0 of its cre-
ation at some inner point of a continuum, we see that in
time ¢ a domain of the field of singularity O, will have the
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FIG. 10. The perturbation zone axial cross section of a moving point singularity.

form shown in Fig. 10; outside this domain ¥, the field is
equal to zero. The surface that bounds ¥, consists of two
parts, such that the singular surface X, is the surface of an
axisymmetrical, curvilinear Mach cone, and 2, 0n X, is a
shock wave front, with the components of velocities,
stresses, and other field parameters being discontinuous;
2., is the rear wave front of disturbances arising at ¢=0.

Let us surround O, and £,, which are a singular point
and a singular surface, with any closed surface X, in the
neighborhood of 2, such as shown in Fig. 10; single out
the separate region 2, on Z,. The X_ is a part of the small
sphere with radius ¢ that tends to zero (on the outward
part of =, this difference is nonessential since the field of
singularity is absent outside V). For simplicity, the field is
assumed to be continuous along 2 _,. Let us consider the I
integrals over 2;, which are equal physically to an energy
flux flowing into Z,. All the integrand functions in Eq.
(2.3.5) are assumed differentiable in ¥V, except X, and O,
on 2. On X, some functions may be infinite.

The energy dissipation at O, and X_ is equal to

dA=1";dx,—,

when O, advances on dx;=V, dt during the time, dr. Here,
Vi, V,, and V; are velocity components of the singular
point, and A is the field energy of the system >’

Hence, we have

0A
P!':g. ’

(2.3.7)

(2.3.8)

where I'; is the specific energy dissipation at O, and X, per
unit length of advance of O, along the x; axis. The energy
dissipation rate is equal to

A=TV;. (2.3.9)
The invariant properties of I' with respect to the integra-
tion surface greatly simplify the calculations.
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For the supersonic or superluminal singularities under
consideration, the singularity O, is the source of energy
flowing down the singular surface 2, which is the sink of
energy. Some examples of this dissipation include the
shock wave in gas dynamics or the Cherenkov—Vavilov
radiation of superluminal electrons in dielectrics.

In the case under study, the singularity is an electron;
hence, I';, I'5, and T'; are equal to corresponding compo-
nents of the force applied to the electron as a drag.

In the general case of a nonzero external field outside
V., the I integral over =_ (which is denoted by T',;) is the
following sum:

Ag+A,=TV,. (2.3.10)

Here A4, and A, are dissipation rates in external and inter-
nal fields obtained by integration over the outer and inner
sides of X,, respectively.

In the special case of the steady motion of a singularity
that corresponds to the infinite time of the motion of the
singularity, the disturbed zone is the infinite cone (or some
cones of different wave processes), as shown in Fig. 11.
The complete integration surface =, consists of =5 and
35 , which are the inner and outer sides of 2. The surface
34 is inside the disturbed zone and 2y is outside it. If the
limits of the T integrals over 2,=37 + 24 for t— « exist,
they provide the complete dissipation 4, and A,,.

The sign of 4, can be positive or negative depending on
the nature of an external field that can either absorb the
energy of the point source or feed an internal field inside
V.. The sign of A, is always positive because it corresponds
to the dissipation of energy.

The value of I is defined as the result of calculating the
I' integral over X, when €-0, since the axis of the light
cone coincides with the direction of motion of the elec-
trons. In gas dynamics, I"' equals the wave drag experi-
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FIG. 11. Surface of integration near a point singularity.

enced by a moving body, and in electrodynamics, I" is the
decelerating radiation energy of Cherenkov—Vavilov.

In the problem under study, according to Egs. (2.1.1)
and (2.1.2), the field is steady state, not only in the vicinity
of Oy, but also all over the disturbed domain V..

The problem is well posed if its solution provides a
finite value of I'; otherwise, the problem is ill posed. Well-
posed problems permit determination of the physical char-
acteristics of singularity; namely, a drag, a specific dissipa-
tion, etc. It should be noted that asymptotic forms of
different kinds of moving singularities are different near the
singular fronts, and improper I', integrals usually are di-
vergent integrals.

In order to compute invariant integrals divergent at
singularities, we apply an  heunstic rule of T
integration,®>%® which requires taking into account only
the finite part of the integration result. Furthermore, the
integration surface in the neighborhood of a singularity
should be symmetrical.

As to the problem under study, symmetry is achieved
provided that the integration surface in the near neighbor-
hood of an electron X, is spherical (Figs. 10 and 11) or is
an axisymmetrical, circular cross section of the Mach cone
in the same neighborhood (see the following section).

Particular forms of invariant I' integrals in different
media used in the moving coordinate frame with respect to
which physical field is steady are listed here:

(1) a compressible gas,“"’?

= Jz (p¥¥;/n;+pn))d: (i,j=12,3), (2.3.11)
where p is pressure and v; is a gas velocity component;
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(ii) an electromagnetic field in a dielectric, >

I= J;: [(D,E;+BH;)n;—3(D,E;+H;B;)n}d3,
(2.3.12)

(iii) a linear or nonlinear elastic medium,%

= fz [(U+3pvive)ni— Oxlip,i;]1d2. {2.3.13)
In a static case, velocities equal zero (v,=0), and the
latter equation provides an invariant J integral.**

lil. SELF-COMPRESSION OF RELATIVISTIC
ELECTRON BEAMS IN A MEDIUM

A. Individual electron with a superluminal velocity in
a dielectric medium in the case of an external
field

Let us consider the motion of an individual electron
with negative charge e having a constant superluminal ve-
locity ¥V in a homogeneous, external electromagnetic field
Ey={E,;} and B;=0 in a dielectric. The proper singular
field E; and B, of this electron is determined by Eqgs.
(2.1.1) and (2.1.2). According to the principle of super-
position based on the linearity of Maxwell’s equations, the
complete field near the individual electron is

E=E,+E, B=B +B,.

The proper dissipation of energy of an electron in the
external field, or the drag of the electron, is defined accord-
ing to Eq. (2.3.12), where the integral is taken over by Z_.

(3.1.1)
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FIG. 12. The three-dimensional Mach front picture of an electron moving in a medium with a speed exceeding the phase speed of light.

At the Z, surface we choose the small circular cross section
of the Mach cone at x;= —e¢ (see Fig. 12).

Electrostriction and magnetostriction effects are ig-
nored here. Substituting Egs. (3.1.1), (2.1.1), and (2.1.2)
into Eq. (2.3.12), and calculating the corresponding sur-
face integrals according to the rule of I integration when
€—0, we obtain

I'i=eEy (i=1,2,3). (3.1.2)

We omit the cumbersome calculations of all surface
integrals and show only the calculation of D, (the force is
directed along the axis of motion). In this case, we have

F3 =]im '2— (DlEl +D2E2 + B|H1 -+ B2H2 —D3E3
-0 25
_B,H,)ds. (3.1.3)

By means of the rules of I" integration, this integral can be
reduced to

r limeE € Tdr E,
= —limeEye€ =ekys.
3 o i€ | (@@= 3
We note that the external field is considered in the
coordinate system attached to the relativistic electron; al-
teration to the laboratory system is made by Lorentz’s
transformations. Formally, Eq. (3.1.2) coincides with cor-
responding expressions for a stationary electron.

(3.1.4)

B. One-dimensional, semi-infinite chain of
superluminal electrons

Let another electron e; be situated inside the Mach
cone of the first electron e, which moves with a superlu-
minal velocity ¥ > a. (Indices 0 and 1 are introduced here
for the convenience of differentiation of these particles
only.) For e, the external field will now be the field of
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electron e;. Therefore, if both charges move along one axis,
then on the axis B=0, according to Eq. (2.1.2), let the
value z be the distance between the particles. According to
Egs. (2.1.1) and (3.1.2), the force acting on the charge ¢,
is:

eger M*
Fi(@2) =507, (3.2.1)
where
12 V2/a*—1 M0
=Tz M0

Equation (3.2.1) is the generalization of Coulomb’s
law. One can see from Eq. (3.2.1) that the rear electron e,
is always attracted to the frontal electron ¢, when V>a. In
this case, there is no reaction of e, on ¢,.

Let us consider the behavior of a one-dimensional,
semi-infinite chain of superluminal electrons equidistantly
separated by the interval b at the initial instant. In this
case, forces exist directed only along the axis of the chain;
we denote by f,,, the force acting on the mth electron, and
due to the nth electron {n <m), the resultant force acting
on the mth electron is

m—1
F,= E_:O Fonn- (3.2.2)

According to Egs. (3.2.1) and (3.2.2), at the initial in-
stant, we obtain

73 m—1
_ -2
Fr(b)=3—m Ea (n+1)"2 (3.2.3)
As is known,”’
m—1 1T2
1< X (n+1)72<. (3.2.4)
n=0
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Hence,

2
F,(b)<F,(b) <% F(b). (3.2.5)
From Eq. (3.2.5) it follows that for any m, the forces
F,_(b) differ little from F,. Therefore, one can obtain a
simple estimate of the deformation of a chain system by
considering the motion of a single electron ¢, in the field
produced by ¢,.
Taking Eq. (3.2.1) into account, the relativistic equa-
tion of motion of electron e, in the moving coordinate

system has the form’%"?
1 /dz 24372
SET e

d’z  (ueV*/c*—1)
dtt 2me’my(1—V?/c?) 2
First, we limit ourselves to the case of small relative
particle velocities where (1/¢?)(dz/dt) may be neglected
in Eq. (3.2.6). Solving Eq. (3.2.6) for the following initial
conditions,

dz

E=O at =0,

we obtain the solution

z=—§b and

2\ 172
(K2 =12 — ) V2 (74 p)V2 4 32 arcsin(l+3) ’

(3.2.7)
where

. eWV/d—e)
~wegmo(1—V*/c*)

Let us estimate the time 7 that is necessary for ¢, to
approach ¢, for a very short distance. In this way, a dense
system of two electrons is formed; quantum interactions
are essential in this dense system, just as in a solid.

Substituting z=0 into the solution, Eq. (3.2.7). we
obtain the time for joining two electrons

(p=1 for dielectrics).

b
—_ ZKl 3 -

We note that quantities . 1. and r are considered in the
coordinate system fixed at the first electron. Using Lorentz
transformation and the laboratory frame.

b =b(1—=V2/cH)\2, =t(1-VZ/) 13,
we obtain from Eq. (3.2.8)

T (3.2.8)

( ')2_ 1T3€0m0(b')3
ROV V=

The dependence by 7’ on ¥2/c? for a dielectric material
is shown in Fig. 13. As we can see, the distance between
the two electrons contracts most substantially in a narrow
region of energies (velocities) of the particles, where 7' is
small. For V2/c?= (3 +2¢€)/5¢, the time of condensation 7’
takes the minimum value

cr(br)3/2

T;:!z(l_e-—i)S/ds (3210)

(3.2.9)
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FIG. 13. Dependence of the laboratory time 7° for the mutual approach
of two relativistic electrons at the velocity v/c.

where

17212
(55/417)3/260 mo/

123/4 e

For an electron, ¢, =6.437x10"2 m—32s,

Hence, a chain of superluminal electrons condenses to
a solidlike state during a time span 7’ defined by Eq.
(3.2.9). For instance, for 4'=1 pm (on the order of the
distance between electrons in pulsed electron beams), we
obtain 7/, ~ 107'%s. This means that electron plasma clus-
ters form at a depth on the order of 1 mm beneath the
surface of an irradiated material.

Cm=

C. Electron beams

As shown, relativistic electron beams exhibit the mech-
anism for self-compression. Since time 7", for which the
formulation of the problem remains valid is small, this
mechanism can manifest itself only for high-density beams
(small b"). From Eq. (3.2.10) the necessary particle den-
sity in the initial beam can be estimated as follows:

no(b')3>>c (1—e~ )y~ ¥2172, (3.3.1)

Quantity T is the time of run of the directed beam of
superluminal electrons in a medium and is determined by
the interplay of two factors: the deceleration of electrons to
the phase speed of light in the medium, and the losses due
to excitation and ionization of the fixed electrons of the
material medium. A more precise value of critical density
can be obtained from Eq. (3.2.9).

Consideration of the spatial distribution of electrons in
a beam shows that forces acting inside the system are pre-
sumably directed along the axis of motion, but forces are
also directed toward the boundary of the Mach cone. How-
ever, the latter forces are substantial only for boundary
electrons, and in the far zone these forces are balanced by
the action of other superluminal electrons. Moreover, dis-
persion of particle energies in a beam induces a Lorentz
force, which depends on the relative velocity of motion.
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It follows that the effect of self-compression can be
observed experimentally when electron beams pass
through a material, the thickness of which is smaller than
the deceleration length. The initial density can be defined
by Eq. (3.3.1), where T is the time of electron motion in
the material.

Decrease of the pulse duration for self-compression of
a beam can be estimated directly, if the initial duration of
the pulse is smaller than T (otherwise, a series of local
zones of large densities are created, and the initial pulse
duration is not transformed). For example, in a dielectric 1
mm thick, initial density on the order of 10** m~3, is nec-
essary in order to considerably decrease the pulse duration
of a beam with a particle energy of 1 MeV,

The estimated value of the particle density is somewhat
higher than the mean densities reached in electron accel-
erators. However, in small volumes (as compared to the
dimensions of a beam) this density can be reached due to
the inhomogeneities in the distribution of electrons in a
beam and the avalanche of secondary ionized electrons.

IV. STEADY SUPERSONIC MOTION OF AN INFINITE
THIN WEDGE

A. Equations for the steady plane probiem of the
theory of elasticity

For the plane problem, Lamé equations of the dynamic
theory of elasticity are as follows:

7o, #o, 150,
6x%+3x§_;fﬁr (i=12),

where ®, and ®, are wave potentials; ¢; and ¢, are veloc-
ities of longitudinal and transverse waves in a medium; and
X1,X, is the system of coordinates connected with the me-
dium. In the moving system of coordinates x=x,— Vi,
y=1Xx,, t' =t, connected with a wedge moving with speed V,
Eqg. (4.1.1) in the steady case is

Mzach,. =1,2
i Ix _"5;2_' (I—‘ s )9

where

(4.1.1)

(4.1.2)

2 V2
Mi:?_l >0.
i

Displacements, stresses, and velocities of the medium
are expressed through the derivatives of wave potentials in
the following way:

b, Iv, y
“x 8x+8y_ g
(4.1.3)
b, I,
“y dy Ix’
14+ M2 —2M? re, 26 Fo,
Tux=G(1+M;—2M}) 3x2+ dx dy’
(4.1.4)
G(M?—1 ‘ 2662%
Ty=GM;—1) 572653
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FIG. 14. The perturbation zone of a supersonic, two-dimensional wedge
moving in an elastic solid.

*26‘32;1)1-+G(M2-—1) 2
==Y 3xy 2 axt

BT PO A (4.1.5)
xTTer T T ax* " axay) e
3uy 32(D1 32(132
YaTT (8x dy dx, )

Here u, and u, are displacements; o,,, o,,, and o,, are
stresses; M, and M, are modified Mach numbers; and G is
the shear modulus of the elastic medium.

Normal and tangent components of velocity, v, and v,,
on a plane are expressed as follows:

v,=vn;, (i=x,y), (4.1.6)

where n; and ¢; are respective components of a normal and
tangent unit vector. The general solution to Eq. (4.1.2) is

=g (x—Mp)+P(x+Mp) (i=12), (4.1.7)

where ¢; and ; are arbitrary functions.

Uy =Ud;

B. General solution to the problem of supersonic
motion of an infinite thin wedge

First, let us consider a special case of the problem of
the motion of a wedge with angle, a, as /- «. The bound-
ary conditions, Egs. (2.2.1) and (2.2.2), along y+6x=0,
x <0 are

v,=0, o,=F(o,v,) O6=tana, (4.2.1)
where normal and tangent vectors are:
n={8(1+8) "2 (1+8)71},
(4.2.2)

6(1__52)—1/2}.

The wave potential ¢, differs from zero in the corre-
sponding area D, situated between the surface of the
wedge, y+6x=0, and the corresponding Mach line,
x+My=0, for the upper half-plane (Fig. 14). The Mach
lines are the shock waves on which the laws of conserva-
tion of mass and momentum should be met. The wedge is
considered thin, i.e., when the condition for the hypervel-
ocity flow past a thin airfoil is satisfied,

t={—(1-6")""".
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S<—<—

M, M, (4.2.3)

This means that each characteristic line of the corre-
sponding family crosses the wedge surface only at one
point and, therefore, the rectilinear shock waves are at-
tached to the wedge vertex. Such a condition is analogous
to forming a shock wave by a wedge in gas dynamics, and
the mathematical problem is analogous to the problem of
the flow of a supersonic gas around a thin wedge.**®!

Let Ay be the undisturbed domain of an elastic body,
A, the domain in which only ®, does not equal zero, and
A, the domain in which both ®; and ®, are not zero. In
each of these domains, p,, p;, and p,, v'?, v'¥, and v,
and o, O'E;), and a§j2 are the densities, velocities, and
stresses of the medium, respectively. The laws of conser-
vation on the Mach lines follow.

(i) Along x+M,y=0, with normal and tangent vec-
tors,

n={(1+M3)"V M (1+M})~V?},
t={—-M,(1+M>) "2, (1+M7)~V?},

we obtain
Po"fg) = Pl"fsi) ’ (4.2.4)
o —oP=p v P (v —v ), (4.2.5)
Tnt —Oial =P1Va (Vi) — ¥4y ) (4.2.6)

(i1) Along x+M,y=0, with normal and tangent vec-
tors,

n={(1+M2) "V M,(1+M>)~1/%},
t={—M,(1+M3) "%, (14+M;) "1/},

we obtain
prve:' = oy, (4.2.7)
oy —a3 = pvia (v —vi2)), (4.2.8)
ool =pw (v —vi). (4.2.9)

Let us express the components of the velocity and
stresses in Eqs. (4.2.4)—(4.2.9) through the derivatves of
@;(§) and ¢¥,(£) using Egs. (4.2.6)-(4.2.9). As a result, we
obtain

@1 (§)=0, @;(§)=0, (4.2.10)
pa=p1=pol 1+ (1+M*)¢7(0)]7, (4.2.11)

x=—V[1+47 (x+ M)+ M) (x+My)],
(4.2.12)

Vy=—V[M] (x+Mp)—9; (x+Myy)]
O/ G=(1+M5—2M}) P} (x+ M) +2Myy (x+ May),

0,/ G=(Mi— 1)U} (x+Mp) —2M,} (x+ M),
(4.2.13)

Ory/ G=2M ¥} (x+ M p) + (M3 — 1) ¢} (x+ Myp).
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In particular, on the wedge surface y+6x=0, according to
Egs. (4.2.7), and (4.2.8), we obtain

V,=—V(1+8)72[8+ (5+M )¢y + (8M,— )¢5 ],
(4.2.14)

v,=—V(1+8) "2 [(M8— 1Y) — (8+ M) ¢y —1],
a,=G(1+8%) " {2(8M,—1) (M, +8)¥

+[(A+M2—2MH) 5 +4M 5+ M2— 1]y
(4.2.15)
Om=G(1+8%) "1 {2(M,+8) (M, 5— 1)y

+[(M2—1)8*—4M,6 — M2+ 195},

where the function arguments ¥,(£,) and ¥,(&,) are
Ei=y(M6—1)/6 and £,=y(M,6—1)/6.

Equations (4.2.12) and (4.2.13) constitute a general
solution of the problem; the form of the functions y¥,(&,)
and ¥, (&,) is determined by two conditions on the surface
of the wedge.

Let us adduce the full account of the results of solving
the problem when the condition o,,= fo,, where f is an
arbitrary constant, is met on the surface of the wedge.
Applying Eq. (4.2.14), we get from Eq. (4.2.1)

(1—-86M,) 5 — (6+M )] =6. (4.2.16)
Here, the argument of functions ¢;(£;) on the straight line,
y+6x=0, as well as in Eqs. (4.2.14) and (4.2.15), is
E=y(M5—1)/8. From Egs. (4.2.2) and (4.2.15), we ob-
tain
{2(M+8)(M5—1)— fFI(1+M>—2M}) 6+ 4M 6

+M3— 1} + [(M3—1)& —4Mo5+1—M;

=2 f(6M,—1)(M,+8) )¢5y =0. (4.2.17)

The solution of Eqgs. (4.2.16) and (4.2.17) follows:

(&) =—8A"[(M:—1)8*—~4M5+1—M>
—2f(6M,—1)(M,+8)],

V) (E)=8A"2(M+86)(M6—-1)

(4.2.18)

—fI+M3—2M})5+4M 5+ M5—1]},
where
A=(8+M)) [ (M} —2M M,—1)8*+2(M,—M,)5— M}
~1]1—f(1=8M,) [ (M} —2M;—1)&
+2(M,—My)6+M5—2M M, —1].

It is also necessary to take ¥ =0 and ¢; =0 in A, and
»=01n A;.

C. Superthin wedge without friction

In the solution of Sec. IV B the value of f is assumed
to be known, although such information concerning the
motion of plasma wedges in a solid is not available. From
Eqs. (4.2.18), one can see that f has a considerable effect
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on the velocity and stresses only when it is close to unity,
i.e., in the expansion of the solutions in Egs. (4.2.18) into
a power series of the form

;! — Z a: n‘fﬂ.
n=0

Here coefficients a;; are small in comparison to ay; there-
fore, the simplest solution of the problem in the limiting
case of zero friction, when f=0, is of interest. This solu-
tion allows us to obtain effective estimates.

We shall confine ourselves to the case of superthin
wedges, for which the following conditions are fulfilled:

1 1
3<E and 3<E .

The solutions, Eqs. (4.2.18), for a superthin wedge, are
reduced to

(1-M3D8 = 26
¢2='1'+_M§. (4.3.2)

(4.3.1)

"_

FTM(1+M5)°

Velocity and stress components in this case are equal to

V= —V( 1 +¢;’+M21{)5'), Vy-:V(l’bg —-Mll,b;’),
(4.3.3)

O'xx=ﬂ( 1 +M§_2M¥)¢';’ +2ﬂM2¢g s
0= (M5— 1)) —2uMpy

Ory=2uM Y} +p (M5 — 1),

where ¥ is given by Eqgs. (4.3.2) in A, ¥ = 0in A}, and
| and ¢ are given by Egs. (4.3.2) in A,.
Density in the disturbed regions is determined by the
expression

(4.3.4)

(M5—1)(M3+1)6
) (4.3.5)

= = 1
P2= M Po( + M1(1+M§)

Normal and tangent stresses on the surface of the
wedge in this limiting case are

pS[(M32—1)2+4M M,]
M, (14 M) ’

ag,= c,,=0. (4.3.6)

Similarly, the case of the arbitrary shape of a wedge
can be considered. The theory of cutting solid materials by
high-power beams of elementary particles has recently
been constructed,*”%% taking into account the motion

and position of a target.

V. DECELERATION OF THE FINITE WEDGE

A. Drag and dissipation of the energy of a wedge
moving with supersonic speed in an elastic
medium

Solutions of the plane problem of the infinite thin
wedge presented in Sec. IV hold for the domain consisting
of two characteristic triangles resting on the contact sur-
face of a wedge of length / (see Fig. 9). This fact helps to
determine energy dissipation and forces affecting the su-
personic body without solving the problem as a whole.
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Let us consider the plane problem of a cavity, at the
end of which a moving supersonic wedge presses the body
for a certain finite period. The length of the cavity is as-
sumed to be much larger than the length of the wedge; the
surface of the cavity is assumed to be free (the effect of the
substance that may be present in the cavity outside the
wedge is neglected). These conditions allow us to place
zero disturbances at infinity. Choose the surface of integra-
tion Z consisting of 2,, X,, and 2, as shown in Fig. 15,
where 2, is situated at an infinite distance from the wedge;
2, is the free surface of the cavity; and X, is the surface of
the wedge contact with the medium. The I integral over
this surface will provide the energy dissipation of the finite
wedge, flowing into shock waves on Mach lines; the whole
surface of the I'" integration embraces all singular surfaces.

The contribution to the I' integrals over X is made
only by Z,,. Therefore, Egs. (2.3.11) in the moving system
of coordinates connected with the wedge will have the fol-
lowing form:

L= | (0 +pvinn,—oyu,mn 1z

(i,/,k=x,.2) (5.1.1)

(vV'=v;+V,;,, u/=u+Vy),

where V, is the component of the wedge velocity vector and
V={V,0} and U’ is the specific energy of the deforma-
tions.

It is easy to see that the second term in Eq. (5.1.1}) is
the sum of the surface forces acting on the rigid wedge. Let
us label this term R,. Then Eq. (5.1.1) becomes

F,=W,+R,, (5.1.2)

where W, is the change of the internal energy of the me-
dium expressed by the first term.

Let us calculate W, and R, in an explicit form for the
simple case of the superthin symmetric wedge without fric-
tion. Let us use the solutions in Eqs. (4.3.2), (4.3.3), and
(4.3.6) and the following expression:

U’-_'%O-jj(uzj“l'u},[) = [(1+V)O'UO'U—-V0'"U!}]/2E, (513)

for a linear-elastic medium, where v 1s Poisson’s ratio and
E is Young’s modulus. We obtain

FES§*1

WJ‘=4(1+’V)2

(W,=0), (5.1.4)

where
F=M7"(1+M3) " *{[4M M, + (1—M3)*]?
+4[M M+ (1-M3) (1 +M:—2M3)?
F2MI(1+v) (1+M3)° +2(14+v) (14 M3)
X (2M\My+1—M3)}.
Further calculations give the following results:
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FIG. 15. Steady-state supersonic motion of a finite wedge.

— BE§* )
R,.= = —2BGH°I
14+v
(5.1.5)
R,=0,
where

(M3—1)"—4M, M,
M, (1-M3)

Comparison of Egs. (5.1.4) and (5.1.5) show that at small

angles of the wedge opening, work spent to increase the

internal energy of a solid W, is small in comparison with

work spent to decelerate the wedge R, . Thus, the dissipa-

tive characteristics of the process of motion of the thin

supersonic wedge are determined by the drag of the wedge.
The formula for the drag,

.Rx= —_ J’E aiju,’-:xnjdz,

w

(5.1.6)

is applicable for any dimensions of the cavities formed at
the fracture.

B. Deceleration of the finite wedge

Let us consider the motion of the wedge subjected only
to the forces of inertia and drag in quasisteady approxima-
tion, i.e., assuming that the drag is given by Eq. (5.1.5). At
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the initial time, the wedge possessed momentum, mV,,
where m is the linear mass of the wedge. The law of motion
of the wedge is

dv
E R V), (5.2.1)

dt

with the initial condition V=¥, at t=0. The solution of
Eq. (5.2.1) has the form

—m (v M(1+M3)
=3G66% )y, (ME—1)2+4M M,

dv, (5.2.2)

where G=pyc3, and M| and M, are the following func-
tions:

M= \V¥/E—1, M,=V¥/i—1.

For the most important limiting case, V/¢;>»1, we ob-
tain the following simple solution from Eq. (5.2.2):

— 2tp0c1621
m )

(5.2.3)

V=V, exp(

The corresponding distance covered by the wedge for the
period  equals

' mV, —2p0c1t521
L(t)=Lth:—-—2poazcllll—exp( - )]
(5.2.4)
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Because m=p,6/2, where p,, is the density of the wedge
substance, from Eq. (5.2.4), we obtain

Lm . Pva
I 48pec;

(5.2.5)

Equation (5.2.5) gives the length of the crack formed
due to supersonic motion of the wedge, the subsonic phase
of motion being neglected.

Taking into account Eq. (4.3.1), we can also derive the
following estimate:

ng}Pwv{z)
I " 4poei”

It is used below.

(5.2.6)

Vi. FORMATION OF CONDENSED ELECTRON-
PLASMA CLUSTERS IN CRYSTALS (A COMPARATIVE
ANALYSIS OF THE THEORETICAL AND
EXPERIMENTAL RESULTS)

A. Preliminary remarks

The mechanical model of the supersonic cutting of the
EFM in Secs. IV and V based on a qualitative analysis of
the experimental observations was not associated with the
quantitative characteristics of electron radiation. It is nec-
essary to evaluate the model with respect to known frac-
ture experiments and estimate the basic parameters of the
condensed electron plasma clusters formed in the materials
under study.

The orders of magnitudes used for further calculation
are: 7=1 ns, the irradiation intensity, ®;=10'" m~2; the
electron energy E=10""J (1 MeV); the cross-sectional
area of the specimen §=5X 107> m? the specimen thick-
ness h,—= 5% 10~* m; the relativistic momentum of an elec-
tron

p=(E/c)*—miF=5%10"2 N'xs:

material density py= 10° kg/m>; the speed of the longitu-
dinal waves ¢, =10° m/s; the atomic spacing 2=10"° m;
the ideal theoretical strength of the crystals {"=10'"! J/m?;
the specific surface energy of the crystals y=1 J/m?, and
the electron mass at rest my=10"" kg. The total momen-
tum of a beam for a pulse is P=10"° N's; the mean value
of the specific energy absorbed in a material g=5x 10’
J/m?; and the energy absorbed in a specimen for a pulse
A4=1 J. These numerical values are typical for experi-
ments for fracturing ionic crystals.

These data show that the specific energy of a fracture is
three orders smaller than the theoretical strength of crys-
tals. However, if one assumes that all energy is spent to
form one or two cracks, the surface energy is equal to 10*
J/m?; this magnitude is much greater than the surface en-
ergy. The mechanical model of supersonic fracture has re-
moved the contradiction and, now, a physical mechanism
of cluster formation using the electron beam self-
compression effect needs to be estimated.
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B. lonization electrons

As mentioned above, the electron density necessary for
considerable self-compression of primary electrons is sub-
stantially greater than the initial density of a beam.

However, irradiation induces considerable ionization
of fixed electrons. According to experimental data,>® the
energy dissipation of fast electrons by ionization is charac-
terized by the parameter, — 9E/d(px) =2 X 10’ eV m®/kg,
for kinetic energy E, from 0.1 to 100 MeV. Specific loss of
energy per unit thickness is equal approximately to
k=5%10""1 J/m for typical density p,. Using the Bethe—
Bloch formula, we obtain a quantity of the electrons 7’ per
unit-thickness liberated by one fast electron,

k
(7] =I+E’ (6.2.1)
where I is the ionization energy of a fixed electron (for
many materials, it is equal approximately to 10 eV), and E;
is the liberated electron energy.

The magnitude E; may approach 10 eV, too. (The cor-
responding velocities of electrons are V~ 10°~10° m/s for
typical speeds of electron clusters in irradiated materials.)
Hence, the mean density of the liberated electrons n;, is

equal to

kd
”i=¢071'=1+;.'=5x 102 m—3,
4

(6.2.2)

This value is more than the initial density of a relativistic
beam n, by seven orders.

Even much greater densities of electron clusters are
possible. For example, in anisotropic crystals having cleav-
age planes, there exist prevailing directions of motion of
electron clusters along the cleavage planes.'? Anisotropy of
mechanical properties is explained by the atomic anisot-
ropy of crystals; therefore, the ionization energy of an elec-
tron depends on the directions of motion. A considerable
current of secondary electrons will probably be created on
the cleavage planes of the material. Directed secondary
currents can possibly be formed by the transference of a
superluminal electron momentum to liberated electrons
and the redistribution of the density of secondary elec-
trons.

Obviously, the formation of clusters of secondary elec-
trons is possible along all of the cleavage planes. An elec-
tron current passing through the weakest cleavage plane
will have the form of a thin blade. The thickness of the
blade d will be much less than the two other dimensions /.

An upper bound for the density of a blade-shaped clus-
ter of secondary electrons p,. can be estimated, assuming
thart all ionized electrons are collected in a blade of dimen-
sions d X 1 x1. We obtain

mokh S®,

*__
pw<pw_d12(I+E,-) * (623)

Note that the specimen lengths are usually smaller than the
distance that electrons move, at Vo=10> m/s, during the
time of fracture 7. (The latter is of the order of 0.1 us.)
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We use Eq. 6.2.3 to answer the question about the
possibility of mechanical cutting by the liberated electrons.
Substituting p} into Eq. (5.2.6), assuming L _=#h,, and
using the relationship d=2/6, we find

2p0¢1(I+E))

Taking into consideration that the destruction of ma-
terial continuity begins at approximately 10719 m, we ob-
tain

107 0<d<7%10~% m. (6.2.5)

The avalanche formation of secondary liberated elec-
trons by relativistic electrons provides another possible
mechanism of the self-condensation of electrons and nucle-
ation of solid plasma clusters.

2

=5x10"11 m? (6.2.4)

C. Parameters of clusters: Comparison of the theory
with experimental data

Let us estimate other parameters of the condensed
clusters of electron plasma using the following scheme for
fracture: (i) The electron fracture of solids is performed by
clusters that are formed by a «th part of liberated electrons
in a specimen domain with characteristic lengths of the
order of h,; (ii) fracture is defined as a failure of the
atomic bonds of the nearest lattice atoms, and we assume
further that d=10"° m in accordance with Eq. (6.2.5).

From Eq. (6.2.4), the mass density of a cluster of
liberated electrons (and the density of the model wedge) is

Kkmokhi®,
Pu=ld(I+E)

The unknown values /, 8, p,,, and k, are related by the
equations of the mechanical model,

(6.3.1)

L:: Pwvo
I = dpgd’ (6.3.2)
d=25. (6.3.3)
and by the obvious inequalities of the same model.
§<o-~10"3 6.3.4
V, ) (6.3.4)
L,

From Eqs. (6.3.1)—(6.3.5), we find the following estimates
for electron clusters:

1 pumSIS50 pm, (6.3.6)
10755k 510-3, (6.3.7)
5%107% kg/m’* S p,, 1071 kg/m?, (6.3.8)
510 m™35n,510% m™3, (6.3.9)
10! sL—l‘s 10°, (6.3.10)

where n,, is the electron density in the cluster.
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For the specimen thickness 4, much greater than 4,
the depth L of the electron fracture mode is proportional
to the intensity ® (an electron cluster is created in the
strata of thickness /,). From Eqs. (6.3.1) and (6.3.2), we
have

kmokihiV,
2dpoci(I+E))

According to Egs. (6.3.6)-(6.3.10) and the values of the
parameters of the EFM, the coefficient, A is of the order of
10~ m?, which agrees with the experiments. Hence, the
theoretically derived dependence of L _ on & confirms the
experimental data (see Fig. 4).

The estimate for /in Eq. (6.3.6) provides a sufficiently
narrow range for the dimension of the cluster. The dimen-
sions of the material inhomogeneities, which form a sec-
ondary electron cluster, are of the same order. This value is
comparable with the lengths of material structural defects
as dislocations, microcracks, and grains (in polycrystalline
metals), but it is smaller than the macrocrack dimensions.

(6.3.11)

L, =A®, A=

VIi. CONCLUSION

The model suggested allows us to comprehend the
main peculiarities specific to the electron fracture mode
(EFM): namely, the quite brittle style of fracture, the in-
dependence of the threshold beam intensity of the primary
cracks, and the supersonic velocity of the crack propaga-
tion. The model is quite simple and rather effective. There-
fore, we anticipate that it will stimulate further research.

The basic idea of the theory presented is that the su-
personic fracture process is accompanied by a very small
amount of work to render a fracture. The invention of
extremely thin hypervelocity beams of very great density
will allow one to cut solids with minimum damage and
energy spent to fracture. Achieving such an invention is
physically possible according to this theory.

Besides relativistic electron beams of great density,
beams of other elementary particles, e.g., protons and in-
tense photon rays, can probably induce the same mode of
fracture. Probably, this is valid also for giant laser beams in
the nanosecond range; however, a great deal of experimen-
tal and theoretical work is required to achieve a full un-
derstanding of the EFM phenomenon.
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